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Structural and dynamical properties of a quasi-one-dimensional classical binary system
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The ground state configurations and the ‘‘normal’” mode spectra of a quasi-one-dimensional binary system of
charged particles interacting through a screened Coulomb potential are presented. The minimum energy con-
figurations were obtained analytically and independently through molecular dynamic simulations. A rich vari-
ety of ordered structures was found as a function of the screening parameter, the particle density, and the ratio

between the charges of the distinct types of particles. Continuous and discontinuous structural transitions as
well as an unexpected symmetry breaking in the charge distribution are observed when the density of the
system is changed. For nearly equal charges, we found a disordered phase where a mixing of the two types of
particles occurs. The phonon dispersion curves were calculated within the harmonic approximation for the one-

and two-chain structures.

DOI: 10.1103/PhysRevB.77.014112

I. INTRODUCTION

Advances in experimental and numerical techniques al-
lowed a considerable improvement of the possibilities to cre-
ate and study new crystalline structures which will open a
vast field of scientific and technological applications. Re-
cently, a variety of novel three-dimensional (3D) binary su-
perlattices obtained through the combination of semicon-
ducting, metallic, and magnetic colloidal nanoparticles was
observed experimentally.’> The self-organization in a two-
dimensional (2D) binary colloidal system resulted in inter-
esting mixed configurations with partial clustering.> The use
of colloidal particles is technically interesting since it allows
a real time and spatial direct observation of their position,
which is a great advantage as compared to atoms or mol-
ecules, as shown recently in an interesting experimental
study concerning defect induced melting.*

Systems of particles moving in space of a reduced dimen-
sionality or submitted to an external confinement exhibit dif-
ferent behavior from their free-of-border counterparts. It has
been shown previously that the presence of constraints gen-
erates new features which are in some cases unexpected,
such as, e.g., the curious ground state configuration found in
a 3D finite size binary Coulomb cluster,” where a mixed
arrangement of the two types of particles was observed in the
core, while the edge of the system was characterized by shell
structures of separated species. Similarly, in 2D systems, we
can cite a reentrant melting phenomenon in a 2D circular
confined cluster of repulsive dipoles®’ and interesting asym-
metrical ground state configurations observed in symmetri-
cally confined Coulomb clusters.®?

Under specific conditions of density and temperature, an
electron gas crystallizes in an ordered structure, forming the
so-called Wigner crystal.'” In general, a Wigner crystal struc-
ture can also refer to an ordered phase occurring in other
systems of interacting particles. Several nonelectronic sys-
tems show such a Wigner ordered phase, which has been
experimentally observed in colloidal systems,''"!3 dusty
plasmas,'#~1¢ and ion traps.!”'3
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Depending on the dimensionality and extent of the sys-
tem, the ordered phase can have a different symmetry.
As shown theoretically, the minimum energy arrangement
of the 2D infinite electron gas is the triangular lattice,'
while the circular confined analog cluster was observed
experimentally?’ and numerically,>' and has a mixed ground
state configuration with a triangular structure in the core and
a circular structure at the edge of the system as a conse-
quence of the symmetry of the external confinement.?*2!

When the 2D infinite system is subjected to an extra con-
finement (e.g., parabolic) in one direction, the system can be
called quasi-one-dimensional (Q1D). Such a QID system of
charged particles interacting through a repulsive potential
self-organized in a chainlike structure was recently experi-
mentally studied in dusty plasmas'>'® and paramagnetic
colloids,>»?> and through analytical and numerical
calculations.”*?> In Ref. 24, the authors presented a system-
atic and interesting study of the structural, dynamical, and
thermal properties as a function of the linear density of the
system. It is claimed that the one-dimensional (1D) Coulomb
crystal confined in a storage ring may be used in atomic
clocks or even for quantum computation.”6-2® An interesting
application for the columnar regular structure of interacting
particles was shown in Ref. 29, where a regular linear array
of superparamagnetic colloidal particles confined in a thin
gap was used for the separation of DNA.

Besides the single-component system of interacting par-
ticles, which has been widely studied in the past years,
Wigner crystallization may also be observed in multicompo-
nent systems of interacting particles.’® The simplest multi-
component case is the binary mixture of two types of par-
ticles which exhibits a richer set of physical properties when
compared to the one-component system. For example, a
large number of different equilibrium configurations which
are intrinsically dependent on the relative fraction of the dif-
ferent types of particles were recently found in a 2D system
of dipoles.?' An interesting analysis of the pair correlation
function decay as a function of the packing fraction in a
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binary system of hard spheres was presented in Ref. 32. The
presence of particles with distinct physical properties (e.g.,
size, charge, and mass) introduces a competition between
different scales, which is the reason for the richer phenom-
enology in such systems.

In the present paper, we extend the work of Ref. 24 to a
binary two-dimensional system of charged particles interact-
ing through a screened Coulomb potential and confined in a
parabolic channel. The particles are allowed to move (with-
out friction) in the x-y plane, but due to the external para-
bolic confinement in the y direction, the system acquires a
QID character, i.e., the particles are free to move in the x
direction and have a constrained motion in the y direction.
Due to the possibility of tuning the range of the screened
interaction potential in the present model, the binary system
of hard spheres®? becomes a particular case of our system,
which occurs when the screening length of the interaction
potential is very small. In spite of the specific interaction
potential considered in the present paper, the main qualitative
features of the obtained results are expected not to depend on
the functional form of the interparticle interaction.

We present a systematic study of the structure of the
ground state as a function of the linear density, the ratio
between the charges of the distinct types of particles, which
characterizes the binary system, and the parameter which
determines the range of the repulsive interaction potential
between the particles. The range of the interaction between
the charged particles can be varied in experimental systems
of colloidal particles by changing, for instance, the salt con-
centration in the solvent.’3 In the present analysis, we limit
ourselves to an equal density of the two types of particles,
which are assumed to have the same mass in order to reduce
the number of parameters. The normal modes, i.e., the
phonons, of the present system are also studied.

The paper is organized as follows. In Sec. II, we describe
the model and the procedure used to find the minimum en-
ergy configurations. In Sec. III, we study two different zero-
temperature phase diagrams. In the first, the ground state
configurations are presented for distinct screening parameter
of the interaction potential and densities. In the second, the
dependence of the crystal structures are shown for different
values of the ratio between charges and density. The proce-
dure to find the frequencies of the normal mode spectra and
the analysis of the phonon dispersion curves are presented in
Sec. IV. Our conclusions are given in Sec. V.

II. NUMERICAL APPROACH

We studied a two-dimensional binary cluster consisting of
a large and equal number of particles with distinct charges ¢,
and g,, which are allowed to move in the x-y plane. The
charged particles interact through a repulsive Debye-Hiickel
(or Yukawa) potential exp(—r/\)/r, are free to move in the x
direction, and are confined by a one-dimensional parabolic
potential which limits the motion of the particles in the y
direction. The potential energy of the system is given by

PHYSICAL REVIEW B 77, 014112 (2008)

r,//\)

1 m
H= 2 Emw()yl anbE E exp( r,

=1

2 2
exp(— |r;—r;|/\
@E p( | i ]| )+@

€ i>j |1'i—1'j|

exp(= [ —1)/A

€ j>1 |rk_ 1’1|

(1)

where € is the dielectric constant of the medium the particles
are moving in, \ is the Debye length, and r;=|r, is the
distance of the ith particle from the center of the confinement
potential. In order to reveal the important parameters of the
system, it is convenient to write the energy and the distances
in units of Ey=(mwlqt/2€)'? and ry=(2q;/mew})'"?, re-
spectively, and to define the quantity a=g¢,/q, (with g,=e
the reference charge taken to be equal to the elementary
charge) and the screening parameter k=ry/\. In so doing,
the expression of the potential energy is reduced to
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and the state of the system is determined now by the ratio
between charges «, the number of particles (which can be
associated with the density), and the dimensionless screening
length k. The temperature is expressed in units of T
=E,/ kg, where kg is the Boltzmann constant.

The minimum energy configurations were found, on the
one hand, by analytical calculations and, on the other hand,
also through molecular dynamics simulations. In the numeri-
cal simulations, we typically considered 300 particles, to-
gether with periodic boundary conditions in the unconfined
direction in order to mimic an infinite system.

The present model system does not address effects due to
frictional dissipation. In spite of the primary importance of
friction to the motion of the particles in real systems, the
ground state configurations are not affected by it.

III. GROUND STATE CRYSTAL STRUCTURES

In view of the large parameter space, and in order to show
the increased richness of a binary system, we discuss first the
case a=2. We only considered equal mass particles. If
masses are taken different, the two types of particles will feel
a different confinement potential which will result in a quan-
titative modification of the phase diagram.®

In this section, we will present the structural results for
our binary Q1D system. The results were obtained both ana-
Iytically and numerically. In the former, we calculate the
energy per particle for configurations with different number
of chains and different arrangement of the particles within
the chains, and minimize such expressions with respect to
the distance between chains. To study the dynamical proper-
ties of the system, we use the harmonic approximation in
order to obtain the normal modes of the ground state con-
figuration. This is shown in Sec. IV.

Before presenting our results, it is convenient to introduce
here a dimensionless linear density (n), defined as the ratio

014112-2



STRUCTURAL AND DYNAMICAL PROPERTIES OF A...

between the total number of particles in the unit cell of the
crystalline arrangement and the length of the unit cell in the
unconfined direction. This is similar to the linear density
defined previously in Ref. 24.

First, we present the minimum energy configurations and
structural transitions as a function of the range of the inter-
action potential and the linear density of the system. More
specifically, we study how the ground state configurations
depend on the the screening parameter (k). Next, we study
the system as a function of the ratio between the charges of
the two types of particles («). In the present study, we limit
ourselves to an equal fraction of particles with distinct
charges.

A. Dependence on x«

In general, the different charged particles organize them-
selves in chains. The number of chains, and how particles are
placed in them, depends on n, the screening parameter («),
and the ratio between the charges («). In this section, we
show how the crystalline structure of the Q1D system de-
pends on « and n. The ratio between charges will be kept
fixed, a=2.0.

Let us first consider the case with k=1. When 7 increases,
the following sequence for the first five ground state configu-
rations is observed: one chain— two chains— four chains
(case 1) — four chains (case 2) — seven chains (see Fig. 1).
The energy per particle as a function of » is shown in Fig.
2(a). As can be seen in Fig. 1, in the one-chain regime, the
particles with distinct charges are arranged alternately, and
equally spaced on the x axis, where the confinement potential
is zero. In this case, the unit cell consists of two particles,
one of each type (Fig. 1). The linear density is n=ry/a, and
the x coordinate of the particles with distinct charges are x;
=2ia and x;=(2i—1)a, with i=* 1, 2, =3, ... . The energy
per particle for the one-chain regime is

—2kjin « e—ZK(j—O.S)/n

n
—tas X,
j 25 (j-0.5)

Ej=(1+a?), 3" 3

j=1
where the first term accounts for the interaction between par-
ticles of the same type, while the last one represents the
interaction between particles with different charges.

When n=0.74155, the two different particles start to
move off the chain, alternating in the positive and negative y
directions, leading to a different ground state configuration
consisting of two chains. We obtained the following expres-
sion for the energy per particle:

—2kj/n

n e
Ey=(1+a%)- > —
4j:l J

Qi exp[—2kV(j = 0.5) + c*/n] c_2

o s
255 V(- 0.5)%+ 2 n’
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where c=d/a is the dimensionless distance between the
chains (Fig. 1). The two-chain regime is characterized by a
remarkable asymmetry in the charge distribution. It is inter-
esting to comment that a similar behavior was experimen-
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tally observed previously in a two-component Coulomb crys-
tal in a linear (quasi-3D) Paul trap and in a binary system of
charged dry grains.>*3> The charge segregation characteriz-
ing the two-chain regime is a consequence of a spontaneous
symmetry breaking, which occurs through a continuous
structural transition. This is made clear in Fig. 2(b), where
the lateral position of the chains is plotted as a function of
the density. We found that with the exception of the transi-
tion from the one-chain to the two-chain regime, all other
structural transitions are characterized by a discontinuity in
the lateral position of the chains, which is associated with a
first order “structural” transition. In this case, the first deriva-
tive of the energy with respect to the density is discontinuous
at the transition point [Fig. 2(c)]. For the continuous transi-
tion (second order structural changes), a discontinuity is ob-
served only in the second derivative of the energy with re-
spect to the density.

A further increase in the density brings the system to the
four-chain regime. In this case, the different types of par-
ticles are again symmetrically distributed with respect to the
x axis, but still segregated. The four-chain configuration is
observed in two different minimum energy configurations,
defined here as case 1 and case 2. In the four-chain (case 1)
regime, the rows with the same type of charges are displaced
with respect to each other by a distance a/4 along the un-
confined direction (x axis), while neighbor rows with distinct
types of particles are displaced by a distance a/2 along the x
axis (Fig. 1). Also, the distance between the internal chains
(consisting of particles with the same charge) is larger than
the distance between the internal chains and the external
ones [Fig. 2(b)]. This is interesting because the interaction
between chains with distinct charges is intuitively expected
to be larger than the interaction between chains with the
same lower charge. In the four-chain (case 2) regime, chains
with the same charge are displaced by a/2 with respect to
each other along the unconfined direction. The distance be-
tween chains has an opposite behavior to that of case 1, i.e.,
the distance between chains with distinct charges is larger
than the distance between the internal rows [Fig. 2(b)].

The specific expressions for the energy per particle for the
four-chain configurations, as well as for other arrangements
presented in Fig. 1, can be obtained directly from Eq. (2).
The three-chain configuration shown in Fig. 1 does not be-
come a minimum energy arrangement for «=2. However, as
will be shown in the next section, for some particular values
of a, such a configuration was found as the ground state.

As can be observed in Fig. 2, when the density is in-
creased, the system tends to crystallize in structures consist-
ing of a large number of chains. In such cases, it is not trivial
to predict the minimum energy arrangement of the particles.
To guide our analytical analysis, we resort to numerical mo-
lecular dynamic simulations. Due to the larger number of
particles considered in the simulations, there are many stable
configurations with energy only slightly different from the
minimal one. In fact, it is extremely difficult to reach the
ground state configuration, even in our numerical simula-
tions. The final configuration typically observed in the simu-
lation was a mixture of several structures. We used this out-
put as a hint to search for the minimal energy arrangement.
In Fig. 1, only the stable configurations that have minimal
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FIG. 1. (Color online) Ground state configurations. The y=0 axis is shown by the thin horizontal dotted line, and the two different types
of particles in the binary system are indicated by different symbols. The red open circles are particles with charge ¢,/g,=a=2, and the black
solid spheres are particles with ¢,/e=1. The linear density of each configuration is also shown.

energy are presented, but many others were considered.
The minimum energy structures presented so far were
also found when we minimized the analytical expressions for
the energy per particle with respect to the distance between
chains for different values of x and n (a=2). The result is
presented as a zero-temperature x-n phase diagram in Fig. 3.
As a general feature, the interval of density in which a par-
ticular phase is observed increases with increasing . Note
that the larger the value of «, the shorter the range of inter-
particle interaction potential. This means that the critical dis-

tance between adjacent particles necessary to produce an in-
teraction strong enough to change the phase structure will be
smaller, and, consequently, the critical density will be larger.

B. Dependence on «

Now we will study how the crystal structure of our system
depends on the density () when different values of the ratio
between charges («) are considered. In this section, we fixed
the screening parameter to k=1, which is a typical value in
colloidal systems and dusty plasmas.
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FIG. 2. (Color online) (a) The energy per particle, and (b) the
lateral position of the chains as a function of the density for k=1
and a=2. The black solid circles are the particles with ¢g,/e=1 and
the red open circles with g,/e=2. (c) The first derivative of the
energy with respect to the density.

For different values of «, the configurations are the same
as the ones presented in Fig. 1, but which type of particle is
located in the internal chains and in the external chains de-
pends on whether « is <1 or >1. In general, particles with
smaller charge are located in the more internal chains.

The zero-temperature a-n phase diagram is presented in
Fig. 4(a). For a> 1, the same sequence of structures previ-

7 L

4 chains
case 1

4 chains 4
case2

7 chains

8 chains

3 4 5
density (n)

FIG. 3. The zero-temperature -n phase diagram for a=2.
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FIG. 4. (Color online) (a) The zero-temperature a-n phase dia-
gram for k=1. (b) Zoom of the small a and intermediate density
regime. Solid (dotted) lines are first (second) order structural tran-
sitions. The symbols are the calculated points. The red dashed re-
gion corresponds to the values of « and n for which the two types
of particles can be found mixed in the same chain.

ously shown in Fig. 3 is found. The behavior is very different
for a<1. In this case, new structures appear or disappear
depending on the values of a and n. For example, an ar-
rangement with three chains (see Fig. 1) is observed for «
=0.237, as seen in Fig. 4(b). In the interval 0.136 <«
=0.237, the three-chain regime appear as the ground state
configuration for intermediate density. The two-chain
— three-chain transition is a first order structural transition.

For = 0.136, the two-chain regime is no longer observed
as the ground state for any value of n. Instead, the system
changes continuously (second order structural change) from
the one- to the three-chain configuration shown in Fig. 1 as
the density is increased [Fig. 4(b)] through a zigzag transi-
tion. The transition three-chain — four-chain transition (case
1) is a first order transition for all values of a.

For a=1, the particles are identical, and the present model
is identical to the one studied previously in Ref. 24. We
found, in agreement with Ref. 24, that the system presents
the following sequence of five different minimum energy
structures as the density is increased: one chain— two
chains —four chains—three chains— four chains— five
chains. These transitions occur respectively at densities n
=0.8946, 2.0312, 2.1389, 3.3222, and 4.7054. Notice that
such a sequence is different from the one found in the case
a# 1 [Fig. 4(a)]. Tt should be emphasized that the three-
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FIG. 5. (Color online) Example of the mixed configuration ob-
tained from molecular dynamic simulations. Black solid circles rep-
resent the reference charge ¢,/e=1, while red open symbols are the
other particles with charge ¢,/e=a.

chain structure observed when a=1 is distinct from the one
presented in Fig. 1. In the three-chain configuration of the
equal charged particles case, the rows present the same den-
sity and are displaced with respect to each other by a dis-
tance a/2 along the x axis. This is not the case for the three-
chain arrangement commented before when 0.136=<c«
=<0.237 for intermediate values of density (see Fig. 1). In the
next section, we directed our attention to the structure of the
present binary system when the distinct charges are almost
equal (a=1).

C. Region around a=1: Disordered phase

Notice that in the density region 1 <=n=<2, the four-chain
(case 1) phase is strongly suppressed in favor of the two-
chain phase, which for a=1 extends now up to n=2.0312.
Beyond this density, there is a small density interval where
the four-chain (case 2) regime is found, which for a=1 is
identical to the previously found four-chain phase.?* In the
density interval 2.0312<n=<3.3222, we found a small re-
gion [red shaded area in Fig. 4(a)] where the two types of
particles are almost randomly distributed over three chains,
which for a# 1 were found to be no longer perfectly straight
(see Fig. 5).

This disordered region, where the chainlike structures are
the same as the ones observed in the case a=1, is character-
ized by the presence of particles with distinct charges at the
same row. Note that the red dashed region of the a-n phase
diagram is inside the region associated with the four-chain
(case 2) regime [Fig. 4(a)]. For n=3.3221, the four-chain
(case 2) regime (Fig. 1) is observed for any value of a.

The mixed or disordered configurations with three chains
were obtained through molecular dynamic simulations. Only
in the mixed region of Fig. 4(a), the energy of such configu-
rations were observed to be smaller than those obtained ana-
lytically from the proposed regular structures (Fig. 1). In Fig.
6, the percentage of the difference in energy between the
four-chain (case 2) regime and the mixed configurations in-
side the mixed region (dashed) of Fig. 4(a) is presented as a
function of the density. The largest difference in energy was
observed for the case =1, where it was less than 1%.

Note that asymmetric mixed configurations were found
recently in a different system of binary charged particles,
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FIG. 6. (Color online) The relative difference between the en-
ergy of the four-chain (case 2) regime, obtained analytically, and the
energy of the mixed configuration, obtained from molecular dy-
namic simulations, for values of « in the mixed region presented in
Fig. 4(a).
which were confined by a circular parabolic® or hard wall3¢-37
potential.

IV. PHONON SPECTRUM

We analyze how the normal mode spectrum of the present
binary system (in the absence of frictional dissipation®®) be-
haves as a function of «, n, and k. Taking into account the
translational invariance of the system in the unconfined di-
rection (x axis), we calculated the normal modes within the
harmonic approximation.’® Since we are strictly dealing with
a two-dimensional system, the number of degrees of freedom
per unit cell is twice the number of particles in the unit cell
(the unit cell is indicated by dotted boxes in Fig. 1). There-
fore, if [ is the number of particles per unit cell, there will be
21 branches for the phonon dispersion curves. Half of these
branches correspond to oscillations along the chain (x axis,
longitudinal modes), while the others are associated with vi-

1 chain
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FIG. 7. (Color online) The motion of the particles for each type
of normal modes for the one- and two-chain regimes.
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FIG. 8. The phonon spectrum for the one-chain configuration with k=1 and a=2 for different values of the density. The TA, the TO, the
LO, and the LA phonon dispersion curves are identified, respectively, by the solid, dashed, dotted, and dot-dashed curves.

brations along the confinement direction (y axis, transverse
modes). If particles in the unit cell present an in-phase vibra-
tion, the mode is also dominantly acoustical, while the op-
posite out-of-phase oscillation determines the optical mode.
In general, a normal mode can be classified in one of the
following classes: longitudinal optical (LO), longitudinal
acoustical (LA), transverse optical (TO), or transverse acous-
tical (TA). The motion of the particles for each type of nor-
mal mode for the one- and two-chain regimes is illustrated in
Fig. 7.

In the harmonic approximation, the normal modes are ob-
tained by solving the system of equations

(wzé,uv,ij_D,u,V,ij)QV,jzo, (5)

where Q, ; is the displacement of particle j from its equilib-
rium position in the v direction, w and v refer to the spatial

coordinates x and y, ,,,,;; is the unit matrix, and D, ;; is the
dynamical matrix, defined by
1 —iuga
D,uV,ij = ;E ¢/J,,V(M)e s (6)
u

where u is an integer assigned to each unit cell. The force
constants are given by

expl— kV(x=x') + (y = y')’]
Ve=x)+ (v -y
with (x—x') e [au,a(u—1/2)], and (y—y’)=interchain dis-
tance with (x,y) and (x’,y’) the equilibrium positions of the

particles in the unit cell, and

bu.fu) = 3,9, .

b u=0)==2 ¢, (). (8)

u#0

The phonon frequency is given in units of wg/ V2. As an
example, the complete dynamical matrix for the one- and
two-chain regimes is given in the Appendix as an example.

The frequencies for the one- and two-chain configurations
are given by

1= V(A +A3) £ (A, - Ay)? +4A° (9)

for the longitudinal modes, and by

o= V1 + (A +A) = V(A - A +4A2  (10)

for the transverse modes. The parameters A;,A,,...,Aq are
given in the Appendix. The wave number k for the one- and
the two-chain regimes is in units of 7/2a, where 2a is the
length of the unit cell in the x direction.

In Fig. 8, the phonon spectrum of the system in the one-
chain regime is presented for different values of the density n
and fixed values of k=1 and a=2. As can be observed, there
is a clear dependence of the dispersion curves on n. For
small values of the density, e.g., n=0.2, the transverse modes
(optical and acoustical) are almost the same [Fig. 8(a)]. As
the density increases, the frequency of the TO mode de-
creases. An interesting feature to keep in mind is that espe-
cially for the TO mode, of the one-chain regime, there is a
resulting force in the direction of the confinement potential
(y direction) as a consequence of the repulsive interaction
between particles with distinct charges. For a sufficiently
small density, the distance between adjacent particles be-
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FIG. 9. The normal modes of the system at the transition [(a)—(c)] from the one-chain to the two-chain regime, and (d) from the one-chain
to the three-chain structure. The TA, TO, LO, and LA relation dispersion curves are given, respectively, by the solid, dashed, dotted, and

dot-dashed curves.

comes large enough to make the interaction between par-
ticles irrelevant to affect the oscillation of such particles
around the equilibrium positions. In this case, the repulsive
force in the y direction is very small and the TO mode will
be mainly determined by the confinement potential. A similar
explanation can be given for the behavior of the TA mode,
but, in this case, the repulsive force in the y direction is
smaller than that for the TO mode. Therefore, for a suffi-
ciently small density, the transverse modes will be deter-
mined predominantly by the restoring force due to the con-
finement potential, which is the reason why such modes
become almost indistinguishable for small densities.

When the density is increased, the distance between adja-
cent particles becomes smaller and the repulsive force be-
tween them increases and acts as a retarding force. As a
consequence, the frequency of the TO oscillations decreases.

The LO mode has the opposite behavior as compared to
the TO mode, i.e., there is a hardening of such mode when
the density increases. This is a consequence of the larger
repulsion due to the closer proximity between particles. A
hardening with increasing density is also observed for the
LA mode.

For the LA mode, a linear dispersion curve such as k
— 0 is found. This means that in this limit, the longitudinal
wave propagates with constant velocity along the chain, and
such a velocity increases with increasing density (Fig. 8).

As can be observed in Fig. 8, especially in the limit k
—0, the TO branch decreases with increasing density. For

n=0.741 55, the system with k=1 and @=2 undergoes a
second order structural phase transition to the two-chain re-
gime. From Fig. 9(a), we notice that the TO mode is zero for
k=0 and becomes linear in the limit k— 0, similar to the LA
mode. Such a behavior characterizes a continuous structural
transition.

In Fig. 9, the dispersion curves for systems with k=1 and
distinct values of « are presented. In each case, we consider
the critical density at which the system transits from the one-
chain to the two-chain regime [Figs. 9(a)-9(c)] or to the
three-chain regime [Fig. 9(d)]. As can be observed in Figs.
9(a)-9(c) for =2, @=0.3, and a=0.2, respectively, the TO
mode is zero for k=0 and is linear for small k values.

In Fig. 9(d), a=0.1, the dispersion curve for the TO mode
is qualitatively different from the previous ones. The soften-
ing of the TO mode is still observed, but now at the edge of
the first Brilloum zone (k=1). In this case, the system
changes directly from the one-chain to the three-chain re-
gime.

The dependence of the phonon dispersion curves on the
linear density for the two-chain configuration, in the case
with k=1 and a=2, is presented in Fig. 10. In general, the
frequencies of the longitudinal (transverse) branches in-
creases (decreases) with increasing density. The explanation
for such a behavior is similar to the one presented previously
for the one-chain regime.

The sound velocity, i.e., v,= dw/dk|;y, corresponding to

8
the LA phonon mode is shown in Fig. 11 as a function of the
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density for a=2. Notice that the sound velocity increases
with density as expected. At n=0.74155, a second order
structural phase transition occurs for a two-chain configura-
tion. At this phase transition, the monotonic behavior of A I
changed because of the decrease in the density of particle
along each chain and the continuous increase of the separa-

tion between the chains.
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FIG. 11. The sound velocity obtained from the LA phonon mode
for the one- and two-chain configurations as a function of density
for k=1 and a=2.
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The general qualitative behavior of the phonon dispersion
curves presented so far for k=1 is also found for different
values of the screening parameter.

V. CONCLUSIONS

We studied a quasi-one-dimensional binary system of
charged particles confined in a parabolic trap. The general
structure and the main features of the normal mode spectrum
were analyzed. The structural and dynamical properties were
studied as a function of the density, the range of the interact-
ing potential, which is an experimental tunable parameter in
systems such as colloidal dispersions, dusty plasmas, or even
in a binary system of hard spheres, and the parameter char-
acterizing the binary system, namely, the ratio between
charges of the two types of particles. We found a very rich
variety of ground state configurations, some of them are even
not symmetric around the symmetry axis (i.e., y=0) of the
1D confinement potential.

The number of chains as well as the internal structure in
such chains are a function of the parameters of the system
(a, n, and k). The set of structures was summarized in zero-
temperature phase diagrams which relate the ratio between
the distinct types of particles and the screening parameter of
the interaction potential with the linear density of the system.
The structural transitions between the distinct phases were
characterized as being of first or second order. A spontaneous
symmetry breaking in the charge distribution of the system
was found corresponding to a structural transition that is
characterized by a continuous change in the lateral position
of the particles. A disordered phase was found in a small
region of the four-chain (case 2) part of the phase diagram,
where the particles are quasi randomly distributed over three
chains. The disordered three-chain configuration transits in a
discontinuous way to the four-chain (case 2) ordered phase.

The phonon dispersion curves for the one- and two-chain
structures were obtained and analyzed for different values of
a and n. In general, the normal mode frequencies depend on
the linear density of the system. The transverse optical mode
decreases monotonically with increasing density, and such a
feature was observed for all values of k and a. The opposite
behavior was observed for the longitudinal modes (optical
and acoustical), i.e., there is a hardening of such modes with
increasing density.

A remarkable softening of one of the branches of the dis-
persion curves was found at the second order structural tran-
sition. The softening of the TO phonon dispersion curve may
occur at the center or at the edge of the first Brillouin zone
(k=1/2a), depending, respectively, on whether the transition
is between the one- and the two-chain configuration or be-
tween the one- and the three-chain structure.
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APPENDIX

The matrix w’I-D (where I is the unit matrix and D is
the dynamical matrix) is used in the calculation of the nor-
mal modes for the one- and two-chain configurations. The
dynamical matrix is of the form

w*—A, 0 —As 0
0 Aw’-A4A, 0 —Ag
—As 0 w’—A, o
0 - Ag 0 Aw?-A,

where Aw2=w2—w(2). The quantities A; and A, (A; and A,)
are associated with the interaction between particles with
charge g, (g,), while A5 and A4 account for the interaction
between distinct charges. For the one-chain configuration,
such parameters are given by

-k(2j-1)/n 2 (2 s 1) 2(2 . 1)2
NG k(2 K (2j
2
azn Q-1 [ + . + e
—2Kj/n Ak 2 2
+ 2 n (2])3 [ RAUSRL ( KJ) }[1 —cos(2kja)],
(A1)
~ —k(2j=1)/n (2j— 1)}
e k(2
Ay=— az n3— [
? j=1 (2j- 1)’ n
“ —2kj/n 2k
—2 32— {1+ﬂ][l—cos(2kja)], (A2)
- (2)) n
- —k(2j-1)/n 2 (2_ 1) 2(2~_ 1)2:|
e k(2] Kk (2)
Ax=
: “,-:21” (2j—1)3[ o
“ —2kj/n 4 2
+ a2 n%e(zj)3 {2 BTl + ( KJ) }[1 —cos(2kja)],
Jj=1
(A3)
© o~ K2j=1)in k(2) - 1)]
Ay=- ? 1
i=-aZn (21—1)*{ T

[1 + 2—}[1 —cos(2kja)], (A4)

«(2j=1)in 2k(2j-1)  K(2j-1)?
=- az n T2+ + >
(2]— 1) n n

X{cos[k(Zj - 1)al}, (A5)
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—k(2j=1)/n

" (21— 1)}

aE {1 + "(2{1‘ 1)]{cos[k(2j— Dal}.

(A6)

The dimensionless wave number £ is in units of 7/2a.
For the two-chain regime, the parameters in the dynami-
cal matrix are of the form

e~rrin . o3 3k K Kr
Qi-D\5+—+=5|-|1+—
r nr n n

aEn

—2kj/n Ak 2
+2n3e 3 [ +ﬂ+( Kj) }[1—005(21(]61)]
Jj=1 2]) n
(A7)
“ —krin 3 2 2.2 3 2
A2=0z2n3er3 {r—CZ+Kn—§+ ::— 1+K;r
j=1
“ 36—2Kj/n 2
-Dn R [1 — cos(2kja)], (A8)
- (2)

_Kr/n|:(2j ) <_+1_K+K_2>_(l+g>j|

i -ZKJ’"{ 4xj +(zK/>2]
(2))°

+ aZE

[1=cos(2kja)],

(A9)
e 3 Kt Bkc? Kr
Pt T\
—ZKJ/}‘I
_ 2
a En 2] )3

—Kr/n 3 3 2
=—a2n {(Zj—l)z(—2+—’<+K—2 1+
r nr n n

X{cos[k(Zj - 1al},

—kr/n 2.2 2
e 32 K2 3ke Kr
=—a’2ng [ >yt + —(1+—>}

r n nr

A4—a2n

%] [1-cos(2kja)], (A10)

><{cos[k(2j - 1)al}, (A12)

where r=1/(2j—1)*+c?, and c=d/a (d and a are indicated in
Fig. 1) is chosen in order that the eigenvalues of the dynami-
cal matrix be positive.
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